Triangle Law of Vectors
If two vectors acting at a point are represented in magnitude and direction by the two sides of a triangle taken in one order, then their resultant is represented by the third side of the triangle taken in the opposite order.
If two vectors A and B acting at a point are inclined at an angle θ, then their resultant
R = √A2 + B2+ 2AB cos θ

If the resultant vector R subtends an angle β with vector A, then tan β = B sin θ / A + B cos θ
2. Parallelogram Law of Vectors
If two vectors acting at a point are represented in magnitude and direction by the two adjacent sides of a parallelogram draw from a point, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram draw from the same point.

Resultant of vectors A and B is given by
√A2+ B2+ 2AB cos θ
If the resultant vector R subtends an angle β with vector A, then tan β = B sin θ / A + B cos θ