<

Mathematics FROM 3

chapter 3 FACTORISATION

METHOD 4: FACTORISATION OF TRIMONIAL

A trinomial is an expression that contains 3 terms only. An example of a trinomial is a quadratic expression.

Ax²+bx+c = 0           Where a, b and c are real numbers

 

 

 

Case I: When a=1

When the coefficient of the term in is 1, we look 2 numbers such that the product is c and their sum or difference is b. We then write them down in factor form.

 

Example 1: Factorize x²+5x+6

Solution

X²+5x+6

X                     +2

X                     +3

X²+5x+6 = (x+2) (x+3)

Example 2: Factorize x²+7x+12

Solution

X²+7x+12

X                     +3

X                     +4

X²+7x+12 = (x+3) (x+4)

 

 

Case II: a¹1

When the coefficient of is not 1, we look for 2 numbers whose product is ac and whose sum is b. The trinomials into 4 terms and use the method of grouping to factorize it.

 

Example 1: Factorize 2x²+13x+15

Solution

2x²+13x+15 = 2x²+10x+3x+15

2x²+10x+3x+15 = (2x²+10x) + (3x+15)

(2x²+10x) + (3x+15) = 2x(x+5) + 3(x+5)

2x(x+5) + 3(x+5) = (x+5) (2x+3)

Example 2: Factorize 3x²+10x+8

Solution

3x²+10x+8 = 3x²+6x+4x+8

3x²+6x+4x+8 = (3x²+6x) + (4x+8)

(3x²+6x) + (4x+8) = 3x(x+2) + 4(x+2)

3x(x+2) + 4(x+2) = (x+2) (3x+4)

par Claude Foumtum