Consider the following;
a*a*a=a3
a*a*a*a=a4
a*a*a*a*a=a5
a*a*a*…*a (n times) =an
The plural of an index is indices. Index form means in power form, ex: a3, a4, etc…
Ex: write the following in index form a)16, b)125, c)7*7*7*9*9
Solution: a)16=2*2*2*2=24, b)125=5*5*5=53, c)7*7*7*9*9=73*92
Laws of indices
- Multiplication law
It states that am * an=am + n where a≠0 and m and n are any number.
Ex: evaluate the following
a) a5*a3=a5+3=a8, b) 59*53=512
- Division law
It states that am / an = am - n where a≠0
Ex: a) a5*a3=a5-3=a2, b) 59/53=56
- Law of exponents (powers)
It states that (am)n = am * n where a≠0.
Ex: a) (a2)2=a2*2=a4, b) (m-4)5=m-4*5=m-20
- Negative law
It states that a-m = 1/(am)
Ex: a) a3/a5=a-2=1/(a2) b) 2-4=1/ (24) =1/16
- Zero law of indices
It states that a0 = 1 where a≠0
Ex: 50=1