<

Maths FROM 2

Chap1: the set Z of integers

INDICES

Consider the following;

a*a*a=a3

a*a*a*a=a4

a*a*a*a*a=a5

a*a*a*…*a (n times) =an

The plural of an index is indices. Index form means in power form, ex: a3, a4, etc…

Ex: write the following in index form a)16, b)125, c)7*7*7*9*9

Solution: a)16=2*2*2*2=24, b)125=5*5*5=53, c)7*7*7*9*9=73*92

 

Laws of indices

  1. Multiplication law

It states that am * an=am + n   where a≠0 and m and n are any number.

Ex: evaluate the following

a) a5*a3=a5+3=a8, b) 59*53=512

 

  1. Division law

It states that am / an = am - n   where a≠0

Ex: a) a5*a3=a5-3=a2, b) 59/53=56

  1. Law of exponents (powers)

It states that (am)n = am * n where a0.

Ex: a) (a2)2=a2*2=a4, b) (m-4)5=m-4*5=m-20

 

  1. Negative law

It states that a-m = 1/(am)

Ex: a) a3/a5=a-2=1/(a2)   b) 2-4=1/ (24) =1/16

 

  1. Zero law of indices

It states that a0 = 1 where a≠0

Ex: 50=1

par Claude Foumtum


Maths FROM 2












Chap12: elementary probability